Financial Application of Multi-Instance Learning: Two Greek Case Studies
نویسندگان
چکیده
The problems of bankruptcy prediction and fraud detection have been extensively considered in the financial literature. The objective of this work is twofold. Firstly, we investigate the efficiency of multi-instance learning in bankruptcy prediction. For this reason, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 150 failed and solvent Greek firms in the recent period. It was found that multi-instance learning algorithms could enable experts to predict bankruptcies with satisfying accuracy. Secondly, we explore the effectiveness of multi-instance learning techniques in detecting firms that issue fraudulent financial statements (FFS). Therefore, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms. The results show that MIBoost algorithm with Decision Stump as base learner had the best accuracy in comparison with other multi-instance learners and single supervised machine learning techniques.
منابع مشابه
The application of data mining techniques in manipulated financial statement classification: The case of turkey
Predicting financially false statements to detect frauds in companies has an increasing trend in recent studies. The manipulations in financial statements can be discovered by auditors when related financial records and indicators are analyzed in depth together with the experience of auditors in order to create knowledge to develop a decision support system to classify firms. Auditors may annot...
متن کاملDesigning a new multi-objective fuzzy stochastic DEA model in a dynamic environment to estimate efficiency of decision making units (Case Study: An Iranian Petroleum Company)
This paper presents a new multi-objective fuzzy stochastic data envelopment analysis model (MOFS-DEA) under mean chance constraints and common weights to estimate the efficiency of decision making units for future financial periods of them. In the initial MOFS-DEA model, the outputs and inputs are characterized by random triangular fuzzy variables with normal distribution, in which ...
متن کاملNonlinear Model Improves Stock Return Out of Sample Forecasting (Case Study: United State Stock Market)
Improving out-of-sample forecasting is one of the main issues in financial research. Previous studies have achieved this objective by increasing the number of input variables or changing the kind of input variables. Changing the forecasting model is another possible approach to improve out-of-sample forecasting. Most researches have focused on linear models, while few have studied nonlinear mod...
متن کاملProsodic Boundary Prediction for Greek Speech Synthesis
In this article, we evaluate features and algorithms for the task of prosodic boundary prediction for Greek. For this purpose a prosodic corpus composed of generic domain text was constructed. Feature contribution was evaluated and ranked with the application of information gain ranking and correlation -based feature selection filtering methods. Resulted datasets were applied to C4.5 decision t...
متن کاملFuzzy Multi-objective Permutation Flow Shop Scheduling Problem with Fuzzy Processing Times under Learning and Aging Effects
In industries machine maintenance is used in order to avoid untimely machine fails as well as to improve production effectiveness. This research regards a permutation flow shop scheduling problem with aging and learning effects considering maintenance process. In this study, it is assumed that each machine may be subject to at most one maintenance activity during the planning horizon. The objec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCIT
دوره 5 شماره
صفحات -
تاریخ انتشار 2010